Наукова електронна бібліотека
періодичних видань НАН України

Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity (Review Article)

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kordyuk, A.A.
dc.date.accessioned 2017-06-26T16:26:07Z
dc.date.available 2017-06-26T16:26:07Z
dc.date.issued 2015
dc.identifier.citation Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity (Review Article) / A.A. Kordyuk // Физика низких температур. — 2015. — Т. 41, № 5. — С. 417-444. — Бібліогр.: 318 назв. — англ. uk_UA
dc.identifier.issn 0132-6414
dc.identifier.other PACS: 74.20.–z, 74.25.Jb, 74.70.Xa, 79.60.–i
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/122074
dc.description.abstract A term first coined by Mott back in 1968 a “pseudogap” is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the hightemperature superconductors (HTSC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales (“two-gap scenario”) and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different “intertwined” orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron-based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott. uk_UA
dc.description.sponsorship I acknowledge discussions with L. Alff, A. Bianconi, S.V. Borisenko, B. Büchner, A.V. Chubukov, T. Dahm, I. Eremin, D.V. Evtushinsky, J. Fink, A.M. Gabovich, M.S. Golden, M. Grilli, D.S. Inosov, A.L. Kasatkin, T.K. Kim, Yu.V. Kopaev, M.M. Korshunov, S.A. Kuzmichev, V.V. M. Loktev, I.A. Nekrasov, S.G. Ovchinnikov, N.M. Plakida, M.V. Sadovskii, A.V. Semenov, S.G. Sharapov, D.J. Scalapino, A.L. Solovjov, M.A. Tanatar, T. Valla, C.M. Varma, A.N. Yaresko, and V.B. Zabolotnyy. The work was supported by the National Academy of Sciences of Ukraine (project 73-02-14) and the State Fund for Fundamental Research (project F50/052). uk_UA
dc.language.iso en uk_UA
dc.publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України uk_UA
dc.relation.ispartof Физика низких температур
dc.subject К 70-летию со дня рождения В. М. Локтева uk_UA
dc.title Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity (Review Article) uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис