Показати простий запис статті
dc.contributor.author |
Kuplevakhsky, S.V. |
|
dc.date.accessioned |
2017-06-10T06:56:47Z |
|
dc.date.available |
2017-06-10T06:56:47Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
0132-6414 |
|
dc.identifier.other |
PACS: 74.50.+r, 74.80.Dm, 05.45.Yv |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/119840 |
|
dc.description.abstract |
We present a complete, exact solution of the problem of the magnetic properties of layered superconductors
with an infinite number of superconducting layers in parallel fields H 0. Based on
a new exact variational method, we determine the type of all stationary points of both the Gibbs
and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either
points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy
functional are those of strict, strong minima. The only minimizes of both the functionals are the
Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson
vortices. In contrast, non-soliton configurations (interpreted in some previous publications as
«isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy
functional: They violate the conservation law for the flux and the stationarity condition for the
Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish
a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the
limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived:
They are nothing but the «vacuum state» and topological solitons of the coupled static
sine-Gordon equations for the phase differences. The stable solutions cover the whole field range
0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse
dimensions of the system, provided the field H to be sufficiently high. Aside from their importance
for weak superconductivity, the new soliton solutions can find applications in different fields of
nonlinear physics and applied mathematics. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.haspart |
Физика низких температур |
|
dc.subject |
Сверхпроводимость и мезоскопические структуры |
uk_UA |
dc.title |
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті