Показати простий запис статті
dc.contributor.author |
Dubuisson, C. |
|
dc.date.accessioned |
2017-05-28T18:49:28Z |
|
dc.date.available |
2017-05-28T18:49:28Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Note on Lieb-Thirring Type Inequalities for a Complex Perturbation of Fractional Laplacian / C. Dubuisson // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 3. — С. 245-266. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1812-9471 |
|
dc.identifier.other |
DOI: 10.15407/mag11.03.245 |
|
dc.identifier.other |
MSC2000: 35P15 (primary); 30C35, 47A75, 47B10 (secondary) |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/118151 |
|
dc.description.abstract |
For s > 0, let H0 = (-∆)s be the fractional Laplacian. In this paper, we obtain Lieb-Thirring type inequalities for the fractional Schrödinger operator defined as H = H0 + V , where V ∈ Lp(ℝd), p ≥ 1, d ≥ 1, is a complex-valued potential. Our methods are based on the results of articles by Borichev-Golinskii-Kupin [BGK09] and Hansmann [Han11] |
uk_UA |
dc.description.abstract |
Для s > 0 пусть H0 = (-∆)s будет дробным лапласианом. В данной статье мы получаем неравенства типа Либа-Тирринга для дробного оператора Шредингера, который определяется как H = H0 + V, где V ∈ Lp(ℝd), p ≥ 1, d ≥ 1, - комплексный потенциал. Наши методы основываются на результатах работ Borichev-Golinskii-Kupin (Bull. Lond. Math. Soc. 41 (2009), No. 1, 117-123) и Hansmann (Lett. Math. Phys. 98 (2011), No. 1, 79-95). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Журнал математической физики, анализа, геометрии |
|
dc.title |
Note on Lieb-Thirring Type Inequalities for a Complex Perturbation of Fractional Laplacian |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті