Розроблено підхід до розпаралелювання процесу розв’язання векторних дискретних оптимізаційних задач за умов невизначеності й ризику, який полягає у зведенні пошуку розв’язків вхідної задачі до розв’язання послідовності однокритеріальних підзадач лінійної оптимізації. Методи розв’язання останніх ґрунтуються на ідеях декомпозиції, відсікаючих площин, релаксації і зводяться до задач безумовної максимізації угнутих кусково-квадратичних функцій, які розв’язуються за допомогою паралельного алгоритму методу Ньютона.
Разработан подход к распараллеливанию процесса решения векторных дискретных оптимизационных задач при условиях неопределенности и риска, который состоит в сведении поиска решений исходной задачи к решению последовательности однокритериальных подзадач линейной оптимизации. Методы решения последних основаны на идеях декомпозиции, отсекающих плоскостей, релаксации и сводятся к задачам безусловной максимизации вогнутых кусочно-квадратичных функций, которые решаются с помощью параллельного алгоритма метода Ньютона.
An approach to parallelizing the solution process of vector discrete optimization problems under uncertainty and risk conditions is developed. This approach consists of the search of solution to initial problem as a sequence of solutions to linear optimization scalar criteria subproblems. The solution methods of linear optimization problems are based on the ideas of decomposition, cutting planes and relaxation, and are reduced to the problems of maximization of concave piecewise quadratic functions, which are solved with the use of the parallel algorithm of Newton method.