Рассматривается метод нечеткой кластеризации при условии, что дополнение нечеткого отношения сходства является метрикой. На базе введения понятий пороговой нормы и пороговой конормы решается задача разбиения исследуемого множества на непересекающиеся кластеры. Предлагаемый метод отличается от методов кластеризации, использующих нечеткое отношение эквивалентности, тем, что позволяет создавать более быстрые алгоритмы построения кластеров.
Розглянуто метод нечіткої кластеризації за умови, що доповнення нечіткого відношення схожості є метрикою. На основі введення понять норм та конорм з порогом розв’язується задача розбиття множини, що досліджується, на кластери, які не перетинаються. Запропонований метод відрізняється від методів, що використовують нечітке відношення еквівалентності тим, що дозволяє створювати більш швидкі алгоритми для побудови кластерів.
The method of fuzzy clustering is examined under the condition that a complement of fuzzy similarity relation is a metric. On the basis of definition of concepts of threshold norm and threshold conorm, the problem of set partitioning on nonintersecting clusters is solved. The method proposed differs from the methods using the fuzzy equivalence relation by the fact that it allows to create faster algorithms of construction of clusters.