Исследовано влияние микро- и субструктуры вакуумных конденсатов никеля на их механические свойства при статических (микротвёрдость) и динамических (диссипативные свойства) нагрузках. Вакуумные конденсаты с отличающимися характеристиками микро- и субструктуры получали при вариации температуры подложки в диапазоне 180—800°С. Показано, что уменьшение размера зёрен вакуумных конденсатов, получаемых при низких температурах подложки, сопровождается формированием внутри них наноразмерных фрагментов, разделённых малоугловыми границами. Вакуумные конденсаты с нанофрагментированными зёрнами характеризуются повышенным уровнем прочности по сравнению с крупнозернистыми структурами никеля. Переход никеля в наноструктурированное состояние сопровождается качественными изменениями его диссипативных свойств: резко уменьшается амплитудная зависимость декремента колебаний и возрастает его зависимость от температуры.
Досліджено вплив мікро- і субструктури вакуумних конденсатів ніклю на їхні механічні властивості при статичних (мікротвердість) і динамічних (дисипативні властивості) навантаженнях. Вакуумні конденсати з різними характеристиками мікро- і субструктури одержували при варіяції температури підложжя в діяпазоні 180—800°С. Показано, що зменшення розміру зерен вакуумних конденсатів, одержаних при низьких температурах підложжя, супроводжується формуванням у них нанорозмірних фраґментів, розділених малокутовими межами. Вакуумні конденсати з нанофраґментованими зернами характеризуються підвищеним рівнем міцности в порівнянні з великозернистими структурами ніклю. Перехід ніклю в наноструктурований стан супроводжується якісними змінами його дисипативних властивостей: різко зменшується амплітудна залежність декремента коливань і зростає його залежність від температури.
Influence of micro- and substructures of vacuum condensates of a nickel on their mechanical properties under static (microhardness) and dynamic (dissipation properties) loadings is investigated. Vacuum condensates with different characteristics of micro- and substructures are fabricated at variation of a substrate temperature in a range 180—800°С. As shown, the reduction of the size of grains of vacuum condensates fabricated at low temperatures of a substrate is accompanied by formation of nanosize fragments divided by small-angle boundaries within them. Vacuum condensates with nanofragmented grains are characterized by the raised level of strength in comparison with coarse-grained structures of a nickel. Nickel transition into a nanostructured state is accompanied by qualitative changes of its dissipation properties: the amplitude dependence of decrement of vibrations sharply decreases, and its dependence on temperature increases.