Построено отображение множества образов на множество векторов ошибок распознавания образов нейронною сетью, которое позволяет связать классификацию образов с анализом векторов в пространстве ошибок. Векторный критерий позволяет группировать образы, распознавать, сравнивать и анализировать их. Обоснованы и развиты методы теории нейронных сетей применительно к решению задачи распознавания сигналов с использованием критерия близости распознаваемых образов в пространстве ошибок распознавания. Сформулирован взвешенный критерий близости образов сигналов в пространстве ошибок. Предложен алгоритм перехода из пространства параметров образов в пространство ошибок распознавания образов. Построено оптимальное решающее правило для классификации образов сигналов с использованием взвешенного критерия близости распознаваемых образов в пространстве ошибок распознавания. Достоверность полученных научных результатов, выводов и рекомендаций работы подтверждена результатами экспериментальных исследований разработанной универсальной системы интеллектуального анализа данных, которая решает задачи распознавания объектов электрооптических изображений NEFClass BGCGG (Neuro Fuzzy Classifier (Basic Gradient Conjugate Gradient, Genetic) — Нейро-нечеткий классификатор (Базовый, Градиент, Сопряженный Градиент, Генетический)), проведенных на базе «Института прикладного системного анализа» НТУУ «КПИ». Полученные в работе результаты, наглядно демонстрируют эффективность использования разработанных моделей, методов и алгоритмов для решения задач распознавания сигналов.
Побудовано відображення множини образів на множину векторів помилок розпізнавання образів нейронною мережею, яке дозволяє зв’язати класифікацію образів із аналізом векторів у просторі помилок. векторний критерій дозволяє групувати образи, розпізнавати, порівнювати та аналізувати їх. Обґрунтовано й розвинено методи теорії нейронних мереж стосовно до рішення задачі розпізнавання сигналів із використанням критерію близькості образів, що розпізнаються у просторі помилок розпізнавання. Сформульовано зважений критерій близькості образів сигналів у просторі помилок. Запропоновано алгоритм переходу із простору параметрів образів у простір похибок розпізнавання образів. Побудовано оптимальне вирішальне правило для класифікації образів сигналів із використанням зваженого критерію близькості розпізнаваних образів у просторі помилок розпізнавання. Вірогідність отриманих наукових результатів, висновків і рекомендацій роботи підтверджено результатами експериментальних досліджень розробленої універсальної системи інтелектуального аналізу даних, що вирішує задачі розпізнавання об’єктів электрооптических зображень NEFClass BGCGG (Neuro Fuzzy Classifier (Basic Gradient Conjugate Gradient, Genetic) — Нейро-нечіткий класифікатор (Базовий, Градієнт, Сполучений Градієнт, Генетичний)), проведених на базі "Інституту прикладного системного аналізу" НТУУ "КПІ". Отримані в роботі результати наочно демонструють ефективність використання розроблених моделей, методів й алгоритмів для рішення задач розпізнавання сигналів.
The display of multiple images on the set of errors vectors of image recognition by neural network, which allows you to associate a classification of images with the analysis of the vectors in the space error, is built. Vector criterion allows you to group images, identify, compare and analyze them. The methods of the theory of neural networks applied to solving the problem of recognition of signals using a criterion of the proximity of the images that are recognized in the space of recognition errors are proved and developed. The weighted criterion of proximity images signals-in-space errors is formulated. The algorithm of the transition from the images parameters space in space of errors of images recognition is proposed. The optimal decisive rule for the classification of images signals using the weighted criterion of the proximity of recognizable images in the space of recognition errors is built. The reliability of the obtained scientific results, conclusions and recommendations of the work is confirmed by the results of experimental research of the developed universal data mining system, which solves the problem of object recognition of the electro-optic images NEFClass BGCGG (Neuro Fuzzy Classifier (Basic Gradient, Connected Gradient, Genetic) — Neuro-fuzzy classifier (Basic Gradient, Connected Gradient, Genetic)), conducted on the basis of the Institute of applied system analysis of NTUU "KPI". The obtained results clearly demonstrate the effectiveness of the use of the developed models, methods and algorithms for solving problems of recognition of signals.