Теоретично досліджено характер розташування молекул азоту (N2) в двостінній вуглецевій нанотрубці (ДВНТ). Встановлено, що система, в якій N2 адсорбується на зовнішній поверхні ДВНТ, є менш стабільною, тоді як взаємодія молекулярного азоту зі стінками внутрішньої ДВНТ підвищує стійкість системи. Характерною особливістю міжтрубного простору ДВНТ є досить низька концентрація молекул азоту в ній. Знайдено, що система N2–ДВНТ є досить стійкою при підвищеній температурі (до ~600 К), однак при подальшому нагріванні спостерігається поступове руйнування структури інтеркаляту.
Теоретически исследован характер расположения молекул азота (N2) в двухстенной углеродной нанотрубке (ДУНТ). Установлено, что система, в которой N2 адсорбируется на внешней поверхности ДУНТ, является менее стабильной, тогда как взаимодействие молекулярного азота со стенками внутренней ДВНТ повышает стабильность системы. Характерной особенностью межтрубчатого пространства ДУНТ является достаточно низкая концентрация молекул азота в ней. Найдено, что система N2–ДУНТ является достаточно стабильной при високих температурах (до ~600 К), однако при дальнейшем нагревании наблюдается постепенное разрушение структуры интеркалята.
Theoretical investigations of the location of nitrogen molecules (N2) inside and outside double-walled carbon nanotubes (DWCNT) are performed. The nitrogen molecules form a rather strong coupling with the walls of nanotubes, with a clear correlation between the stability of the arrangement of intercalating molecules and the structure of DWCNT. When nitrogen intercalates through the interior of the internal nanotube, such a system is more stable; in this case, the interaction of nitrogen with the walls of the external nanotube is most unstable. Intermediate stability manifests itself in the intercalated system, in which a nitrogen molecule is localized between the walls of internal and external nanotubes. The N2-doped DWCNT system is sufficiently stable at elevated temperatures up to 600 K. At higher temperatures, the gradual breakup of the nitrogen-intercalated lattice is observed.