Наведено математичну модель процесу теплообміну водонафтової емульсії у каналах різного поперечного перерізу під дією мікрохвильової енергії. Враховуючи фізичні характеристики емульсії, побудовано фізико-математичну модель на основі в’язкопластичного матеріалу. Розроблено метод розв’язування задачі нестаціонарного конвективного теплообміну, що ґрунтується на відповідних скінченних інтегральних перетвореннях. Наведено числову реалізацію отриманих розв’язків задачі та проведено порівняльний аналіз з відомими результатами. Показано, що досліджена фізико-математична модель може бути застосована для випадків теплообміну у каналах, переріз яких відмінний від розглянутих та припускає застосування розробленого методу.
Приведена математическая модель процесса теплообмена водонефтяной эмульсии в каналах разного поперечного сечения под действием микроволновой энергии. Учитывая физические характеристики эмульсии, построена физико-математическая модель на основе вязкопластичного материала. Разработан метод решения задачи нестационарного конвективного теплообмена, который основывается на соответствующих конечных интегральных преобразованиях. Приведена числовая реализация полученных результатов задачи и проведен сравнительный анализ с известными результатами. Показано, что исследованная физико-математическая модель может быть применена для случаев теплообмена в каналах, сечение которых отлично от рассмотренных и предполагает применение разработанного метода.
The mathematical model of heat exchange's process of a water-oil emulsion in channels of different traversal section under activity of microwave energy is gained. The physical and mathematical model is constructed on the basis of plastic material considering physical performances of an emulsion. The method of the solution of a nonsteady convective heat exchange's problem which is grounded on corresponding terminating integrated transformations is developed. Numerical embodying of the gained results of a problem is given and the comparative analysis with known results is lead. It is shown, that the explored physical and mathematical model can be applied to cases of heat exchange in channels where section is distinct from viewed and guesses application of the developed method.