Досліджується питання про існування Т-факторизації повно-го графа Kn непарного порядку n = 2k +1. За допомогою пів-обертового методу підтверджується гіпотеза «Кожне си-метричне дерево допускає Т-факторизацію» для дерева порядку n=13, n=17. За результатами досліджень складено таблицю.
Исследуется вопрос о существовании T-факторизаци полного графа Кn нечетного порядка n = 2k + 1. С помощью полуоборотного метода подтверждается гипотеза «Каждое симметрическое дерево нечетного порядка допускает T-факторизацию» для деревьев порядка n = 13, n = 15, n = 17. По результатам исследований составлена таблица.
In this paper we explore the problem of the existence of T-factorization of complete graph Кn of odd order n = 2k + 1. The research in this direction is confirm the hypothesis «For each symmetrical tree of odd order T-factorization is possible» for tress of order n = 13, n = 15, n = 17 with the help of a half-turned method. The results of studies are presented in the form of table.