Розглянуто початково-крайову задачу третього роду для багатовимірного інтегро-диференційного рівняння параболічного типу з виродженням. Для неявної двошарової різницевої схеми на основі методу покомпонентного розщеплення побудовано нелінійну монотонну різницеву схему підвищеного порядку апроксимації (вище першого), що задовольняє принципу максимуму. Для похибки різницевого розв’язку схеми отримано апріорні оцінки і доведено достатні умови збіжності її до нуля. Досліджено чисельну похибку різницевого розв’язку.
The initial–boundary-value problem for a multidimensional integro-differential equation with degenerated parabolicity is considered. Based on the maximum-principle theorem and splitting method, a nonlinear monotonic high-order (higher than the first) numerical scheme is constructed for an implicit two-layer scheme. For the error of a numerical solution, a priori estimates are obtained and the sufficient convergence conditions are proved. A posteriori estimates for the numerical error of the solution are investigated.