Досліджено кільцеві Q-гомеоморфізми відносно p-модуля. Встановлено критерій належності цьому класу. Отримано оцінку міри образу кулі при таких відображеннях і досліджено асимптотичну поведінку в нулі. Доведено, що скінченно біліпшицеві гомеоморфізми є кільцевими Q-гомеоморфізмами відносно p-модуля. Це дає можливість описати асимптотичну поведінку в нулі скінченно біліпшицевих відображень, які є узагальненням ізометрій та квазіізометрій.
We consider the ring Q-|homeomorphisms with respect to the p-modulus and establish a belonging criterion for this class. We obtain a measure estimate for the image of a ball and investigate the asymptotic behavior at zero under such mappings. It is shown that the finitely bi-Lipschitz homeomorphisms are ring Qhomeomorphisms with respect to the p-modulus. This makes it possible to describe the asymptotic behavior of finitely bi-Lipschitz at zero maps which are a far-reaching generalization of isometries and quasiisometries.