Розглянуто клас систем вигляду x'=a(x)+Σi=1,m bi(x)βi(x,u), x належить Rn (m≤n), де a(x), b1(x), ..., bm(x) — n-вимірні векторні поля, β1(x,u), ..., βm(x,u) — скалярні функції, u — одновимірне керування. Запропоновано метод відображення таких систем на системи більш простого вигляду. На основі цього з використанням методу функції керованості наведено достатні умови їх керованості. Описано побудову керувань, які переводять довільну початкову точку в початок координат за траєкторіями відповідних замкнених систем за деякий скінченний час.
We consider a class of systems in the form x'=a(x)+Σi=1,m bi(x)βi(x,u), x belongs Rn (m≤n), where a(x), b1(x), ..., bm(x) are n-dimensional vector fields, β1(x,u), ..., βm(x,u) are scalar functions, and u is a one-dimensional control. We propose a method of mapping onto systems of a simpler form. Then, we use the controllability function method to give sufficient conditions of controllability of such systems. Construction of controls which transfer an arbitrary initial point to the origin along trajectories of the corresponding closed systems at a certain finite time is described.