Встановлено достатні умови існування рівномірного (чебишовського, мінімаксного) наближення функції сумою полінома та експоненти з найменшою абсолютною похибкою й інтерполюванням у зовнішніх точках. Запропоновано алгоритм визначення параметрів такого рівномірного наближення за схемою Ремеза. Обґрунтовано застосування ітераційного методу для обчислення значення нелінійного параметра.
The sufficient conditions of existence of uniform (Chebyshev, minimax) function approximation by a sum of the polynomial and the exponential with least absolute error and with interpolation in external points are established. The algorithm of parameter determining of such approximation by Remez method is constructed. The application of the iterative method for calculation of nonlinear parameter value is substantiated.
Установлены достаточные условия существования равномерного (чебишевского, минимаксного) приближения функции суммой многочлена и экспоненты с наименьшей абсолютной погрешностью и интерполированием во внешних точках. Предложен алгоритм определения параметров такого равномерного приближения по схеме Ремеза. Обосновано применение итерационного метода для вычисления значения нелинейного параметра.