Предложен метод решения проблемы сближения управляемых объектов в игровых задачах динамики с терминальной функцией платы, который заключается в систематическом использовании идей Фенхеля - Моро применительно к общей схеме метода разрешающих функций. Суть предлагаемого метода заключается в том, что разрешающую функцию удается выразить через сопряженную к функции платы и, используя инволютивность оператора сопряжения для выпуклой замкнутой функции, получить гарантированную оценку терминального значения функции платы, которая представляется через значение платы в начальный момент и интеграл от разрешающей функции. Введены понятия верхней и нижней разрешающих функций двух типов и получены достаточные условия гарантированного результата в дифференциальной игре с терминальной функцией платы в случае, когда условие Понтрягина не имеет места. Рассмотрены две схемы метода разрешающих функций, построены соответствующие стратегии управления и дано сравнение гарантированных времен. Результаты иллюстрируются на модельном примере.
Запропоновано метод розв'язання проблеми зближення керованих об'єктів в ігрових задачах динаміки з термінальною функцією плати, який полягає в систематичному використанні ідей Фенхеля–Моро стосовно загальної схеми методу розв’язувальних функцій. Сутність запропонованого методу полягає в тому, що розв’язувальну функцію можна визначити через спряжену до функції плати з використанням інвалютивності оператора спряження для опуклої замкненої функції, і отримати гарантовану оцінку термінального значення функції плати, яку представлено через значення плати в початковий момент та інтеграл від розв’язувальної функції. Наведено поняття верхньої та нижньої розв’язувальних функцій двох типів і отримано достатні умови гарантованого результату в диференціальній грі з термінальною функцією плати у разі, коли умова Понтрягіна не має місця. Запропоновано дві схеми методу розв’язувальних функцій, побудовано відповідні стратегії керування і наведено порівняння гарантованих часів. Результати ілюстровано на модельному прикладі.
A method is proposed for solving the problem of convergence of controlled objects in dynamic game problems with the terminal payoff function, which consists in the systematic use of Fenchel–Moreau ideas as applied to the general scheme of the method of resolving functions. The essence of the proposed method is that the resolving function can be expressed in terms of the function conjugate to payoff function and, using the involution of the conjugation operator for a convex closed function, we obtain a guaranteed estimate of the terminal value of the payoff function, which can be presented in terms of the payoff value at the initial instant of time and integral of the resolving function. The concepts of upper and lower resolving functions of two types are introduced and sufficient conditions for a guaranteed result in a differential game with a terminal payoff function are obtained for the case where the Pontryagin condition does not hold. Two schemes of the method of resolving functions are considered, the corresponding control strategies are constructed, and guaranteed times are compared. The results are illustrated by a model example.