Предложен эволюционный алгоритм аппроксимации нелинейных зашумленных функций, основанный на коэволюционных моделях кооперации и конкуренции. Алгоритм реализует среду, способствующую сотрудничеству и конкуренции популяций, в которых каждый человек является нейросетью прямого распространения, который решает специфическую задачу. Для аппроксимации исследуемой функции предлагается использовать популяции универсальных апроксиматоров, а для борьбы с возможными помехами - ввести дополнительную популяцию автоэнкодеров, устраняющую помехи. Приведены результаты имитационного моделирования, подтверждающие эффективность предложенного метода аппроксимации нелинейных зашумленных функций.
Запропоновано еволюційний алгоритм апроксимації нелінійних зашумлених функцій, заснований на коеволюційних моделях кооперації та конкуренції. Алгоритм реалізує середовище, що сприяє співпраці та конкуренції популяцій, в яких кожна особа є нейромережею прямого розповсюдження, що вирішує специфічну задачу. Для апроксимації досліджуваної функції пропонується використовувати популяції універсальних апроксиматорів, а для боротьби з можливими завадами — ввести додаткову популяцію автоенкодерів, що усувають завади. Наведено результати імітаційного моделювання, що підтверджують ефективність запропонованого методу апроксимації нелінійних зашумлених функцій.
An evolutionary algorithm is proposed for approximating nonlinear noisy functions, based on coevolutionary models of cooperation and competition. The proposed algorithm implements an environment that is conducive to cooperation and competition of populations in which each individual is a feedforward neural network that solves a specific problem. It is proposed to use populations of universal approximators for the studied function approximation, and to introduce an additional population of denoising autoencoders for reduction of possible noise. The simulation results confirm the effectiveness of the proposed method of nonlinear noisy functions approximation.