В роботі розглядаються основні аспекти застосування сучасних технологій менеджменту знань для здобуття інформації з Big Data. Як показує аналіз сучасного стану досліджень у цій сфері, для того, щоб ефективно визначати, яку саме інформацію можна отримати з певних наборів Big Data, так і зробити це здобуття більш корисним (наприклад, недоцільно здобувати вже відомі або наочні правила), потрібно застосовувати фонові знання, які містяться в онтологіях предметних областей, що цікавлять користувачів. За допомогою таких онтологій користувачі можуть формально описувати сферу своїх інформаційних потреб, задавати структуру потрібних інформаційних об’єктів та явно виділяти ті аспекти предметної області, які є важливими для поточної задачі. Це викликає необхідність у засобах пошуку або створення онтологій, які відповідають задачі користувача. Предметом обробки в процесі аналізу семантики Big Data є їх метадані, в яких відомості про зміст Big Data, як правило, представлені неструктурованим природномовним описом. Тому виникає потреба у стандартизації подання метаописів з використанням відповідних онтологій, які визначають структуру та семантику окремих елементів метаданих. Застосування методів Data Mining дозволяє здобувати необхідні знання з неструктурованих елементів таких метаданих. Новизна досліджень, які запропоновані у цій роботі, полягає у тому, що фонові знання, які використовуються для аналізу Big Data та їх метаописів, генеруються автоматизовано відповідно до поточної задачі користувача (на основі семантично розмічених Wiki-ресурсів та пов’язаних з ними онтологій), що забезпечує більш пертинентний підбір наборів Big Data, з яких здобуваються потрібні користувачеві знання. Такий підхід дозволяє зменшити обсяг вибірки, що обробляється, та зменшити час та складність її аналізу.
The paper considers the main aspects of modern technologies applied for knowledge analysis to obtain information from Big Data. The analysis of the current state of research in this area shows that background knowledge subject areas of user interest represented by domain ontologies can be used both in order to effectively analysis of information acquried from certain sets of Big Data, and to make this acquisition more useful. With the help of such ontologies, users can formally describe the scope of their information needs, define the structure of the required information objects and explicitly highlight critical for current task domain aspects. Subject of rocessing in the semantics analysis of Big Data is their metadata usually represented by unstructured natural language text. We need to standardize the representation of meta-descriptions wit use of appropriate ontologies that determine the structure and content of individual elements of metadata.