Розглядається нелiнiйне диференцiальне рiвняння з частинними похiдними i вiдхильною (перетвореною) просторовою змiнною. Дане рiвняння є однiєю з математичних моделей формування рельєфу на поверхнi пластини пiд дiєю потоку iонiв. Вивчається перiодична крайова задача. Запропоновано механiзм формулювання хвильового нанорельєфу як результат втрати стiйкостi плоского рельєф. Хвильовий рельєф знаходиться в результатi розв’язання бiфуркацiйних задач, для дослiдження яких використано апарат теорiї нормальних форм, метод iнварiантних многовидiв. Для розв’язкiв, що описують хвильовий нанорельєф, наведено асимптотичнi формули.
We consider a nonlinear partial differential equation with deviating (transformed) spatial variable. This equation serves as a mathematical model of a relief formation on the surface of a plate undergoing an ionic bombardment. We study a periodic boundary-value problem, and propose a machinery for forming a ripple nanorelief as on outcome of loss of stability of the flat relief. The ripple relief is found as a solution of a bifurcation problem that is studied using the theory of normal forms and the method of invariant manifolds. For solutions that describe the ripple nanorelief, we give asymptotic formulas.