Изучается множество D∞ бесконечно дифференцируемых периодических функций в терминах обобщенных ψ¯-производных, определяемых парой ψ¯=(ψ₁,ψ₂) последовательностей ψ₁ и ψ₂. Показано, что каждая функция f из множества D∞ имеет по крайней мере одну производную, параметры которой ψ₁ и ψ₂ убывают быстрее, чем произвольная степенная функция, и в то же время для произвольной функции f∈D∞ , отличной от тригонометрического полинома, найдется пара ψ, параметры ψ₁ и ψ₂ которой имеют такую же скорость убывания и для которой ψ¯-производная уже не существует.
The set D∞ of infinitely differentiable periodic functions is studied in terms of generalized ψ¯-derivatives defined by a pair ψ¯=(ψ₁,ψ₂) of sequences ψ₁ and ψ₂ . It is shown that every function f from the set D∞ has at least one derivative whose parameters ψ₁ and ψ₂ decrease faster than any power function, and, at the same time, for an arbitrary function f∈D∞ different from a trigonometric polynomial, there exists a pair ψ whose parameters ψ₁ and ψ₂ have the same rate of decrease and for which the ψ¯-derivative no longer exists.