Численное моделирование теплообмена и газодинамики в дуговой сталеплавильной печи (ДСП) литейного класса вместимостью 3 т показало, что при длительности простоев печи 18–20 часов и более, замена 40 % футеровки стен и 16–20 % футеровки свода водоохлаждаемыми элементами с объемной структурой обеспечивает паритет с исходной печью по расходу электроэнергии при существенной экономии огнеупоров. Уменьшение диаметра ванны с 2,1 до 1,8 м и увеличение ее глубины при данной вместимости печи снижает потери теплоты излучением на 13–18 %. Применение системы рассредоточенной аспирации уменьшает пылегазовые выбросы в электродные зазоры в 2 раза, приток воздуха в печь на – 11 % и эмиссию плавильной пыли – на 20 % в сравнении с портальной аспирационной камерой. Практикой эксплуатации 3-т ДСП с комбинированным сводом подтверждено снижение расхода огнеупоров на 6,5–11 и графитированных электродов на 1,2–1,5 кг/т, соответственно.
Чисельне моделювання теплообміну та газодинаміки в дуговій сталеплавильній печі (ДСП) ливарного класу місткістю 3 т показало, що при тривалості простоїв печі 18–20 годин і більше, заміна 40 % футеровки стін і 16–20 % зводу водоохолоджуваними елементами з об’ємною структурою забезпечує паритет з вихідною піччю по витраті електроенергії при істотній економії вогнетривів. Зменшення діаметра ванни з 2,1 до 1,8 м і збільшення її глибини при даній місткості печі знижує втрати теплоти випромінюванням на 13–18 %. Застосування системи розосередженої аспірації зменшує пилогазові викиди в електродні зазори в 2 рази, приплив повітря в піч – на 11 % та емісію плавильного пилу – на 20 % в порівнянні з портальної аспіраційною камерою. Практикою експлуатації 3-т ДСП з комбінованим зводом підтверджено зниження витрати вогнетривів на 6,5–11 і графітованих електродів на 1,2–1,5 кг/т, відповідно
Numerical modeling of heat transfer and gas dynamics in an electric arc furnace (EAF) of a foundry class with a capacity of 3 tons has shown that with a furnace downtime of 18–20 hours and more, replacing 40 % of the wall lining and 16–20 % of the roof lining by water-cooled elements with a volume structure provides parity with the original furnace on the consumption of electricity with a significant saving of refractories. Reducing the diameter of the bath from 2.1 to 1.8 m and increasing its depth with a given capacity of the furnace reduces heat loss with radiation by 13–18 %. The use of a dispersed aspiration system reduces dust and gas emissions into electrode clearances by 2 times, air inflow into the furnace – by 11 %, and emission of melting dust – by 20 % in comparison with the portal aspiration chamber. The practice of operating 3 tons EAF with a combined roof confirmed a decrease in the consumption of refractories by 6.5–11 and graphite electrodes by 1.2–1.5 kg/ton, respectively.