We study strong limit theorems for a bivariate function sequence of an nonhomogeneous Markov chain indexed by a generalized Bethe tree on a generalized random selection system by constructing a nonnegative martingale. As corollaries, we generalize results of Yang and Ye and obtain some limit theorems for frequencies of states, ordered couples of states, and the conditional expectation of a bivariate function on Cayley tree.
Вивчаються сильнi граничнi теореми для послiдовностi функцiй двох змiнних неоднорiдного марковського ланцюжка, що проiндексований узагальненим деревом Бете на узагальненiй системi випадкового вибору, шляхом побудови невiд’ємного мартингала. Як наслiдок, узагальнено результати Янга та Є i отримано деякi граничнi теореми для частот станiв, упорядкованих пар та умовного сподiвання функцiї двох змiнних на деревi Келi.