Zoschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a no-local Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule.
Зошiнгер вивчав модулi, радикали яких мають доповнення, i назвав цi модулi радикально-доповненими. Мотивуючись цим, будемо називати модуль сильно радикально доповненим (або, скорочено, srs-модулем) якщо кожен пiдмодуль, що мiстить радикал, має доповнення. Доведено, що кожен (скiнченнопороджений) лiвий модуль є srs-модулем тодi i тiльки тодi, коли кiльце є лiвим (напiв)досконалим. Над локальною дедекiндовою областю srs-модулi та радикально доповненi модулi збiгаються. Над нелокальною дедекiндовою областю srs-модуль є сумою свого пiдмодуля скруту i радикального пiдмодуля.