Розглядається початково-крайова задача, що описує нестаціонарні коливання пружного середовища з великою кількістю дрібних каверн, які заповнені в'язкою нестислою рідиною. Вивчається асимптотична поведінка розв'язку, коли діаметри каверн прямують до нуля, їх кількість прямує до нескінченності та розташовуються вони „об'ємно". Побудовано усереднене рівняння, що описує головний член асимптотики. Це рівняння є моделлю розповсюдження хвиль у середовищах типу зволоженого грунту, гірських порід та деяких біологічних тканин.
We consider an initial boundary-value problem used to describe the nonstationary vibration of an elastic medium with large number of small cavities filled with a viscous incompressible fluid. We study the asymptotic behavior of the solution in the case where the diameters of the cavities tend to zero, their number tends to infinity, and the cavities occupy a three-dimensional region. We construct an averaged equation to describe the leading term of the asymptotics. This equation serves as a model of propagation of waves in various media, such as damped soil, rocks, and some biological tissues.