Доказано, что в области элементарных делителей пересечение всех нетривиальных двусторонних идеалов равно нулю. Также показано, что область Безу с конечным числом двусторонних идеалов является областью элементарных делителей тогда и только тогда, когда она есть 2-простая область Безу.
We prove that, in a domain of elementary divisors, the intersection of all nontrivial two-sided ideals is equal to zero. We also show that a Bézout domain with finitely many two-sided ideals is a domain of elementary divisors if and only if it is a 2-simple Bézout domain.