We study properties and the asymptotic behavior of spectral characteristics for a class of singular Sturm–Liouville differential operators with discontinuity conditions and an eigenparameter in boundary conditions. We also determine theWeyl function for this problem and prove uniqueness theorems for a solution of the inverse problem corresponding to this function and spectral data.
Дослiджено властивостi та асимптотичну поведiнку спектральних характеристик для класу сингулярних диференцiальних операторiв Штурма – Лiувiлля з розривними умовами та власним параметром у граничних умовах. Визначено функцiю Вейля для цiєї задачi та доведено теореми про єдинiсть розв’язку оберненої задачi, що вiдповiдає цiй функцiї та спектральним даним.