В теорії нескінченних груп серед корисних узагальнень класичної теореми Машке досить важливе місце посідає теорема Ковача - Ньюмена, яка дає достатні умови існування G-інваріантних доповнень у модулях над періодичною скінченною над центром групою G. У даній статті теорему Ковача - Ньюмена узагальнено на модулі над груповим кільцем KG, де K - дедекіндова область.
In the theory of infinite groups, one of the most important useful generalizations of the classical Maschke theorem is the Kovačs-Newman theorem, which establishes sufficient conditions for the existence of G-invariant complements in modules over a periodic group G finite over the center. We genralize the Kovačs-Newman theorem to the case of modules over a group ring KG, where K is a Dedekind domain.