Доведено, що коли аналітична функція f з ізольованою особливою точкою у ∞ є розв'язком диференціального рівняння P(z,lnz,f,f')=0 (Р — многочлен по всіх змінних), то f має скінченний порядок. Вивчаються асимптотичні властивості мероморфного розв'язку із логарифмічною особливою точкою.
We prove that if an analytic function f with an isolated singular point at ∞ is a solution of the differential equation P(z,lnz,f,f′) = 0, where P is a polynomial in all variables, then f has finite order. We study the asymptotic properties of a meromorphic solution with logarithmic singularity.