Доведено, що для метризовного простору X зі скінченною розмірністю Лебеґа-Чеха, топологічного простору Y і топологічного векторного простору Z кожне відображення f:X×Y→Z, яке неперервне відносно першої змінної і належить до берівського класу α відносно другої змінної, коли значення першої змінної перебігають скрізь щільну в X множину, належить до (α + 1)-го класу Бера.
For a metrizable space X with finite Lebesgue–Cech dimensionality, a topological space Y, and a topological vector space Z, we consider mappings f: X × Y → Z continuous in the first variable and belonging to the Baire class α in the second variable for all values of the first variable from a certain set everywhere dense in X. We prove that every mapping of this type belongs to the Baire class α + 1.