Вивчаються нескінченновимірні алгебри Лі L над довільним полем, які містять підалгебру A з властивістю dim(A+[A,L])/A<∞. Доведено, що у випадку локальної скінченносгі алгебри L підалгебра A міститься в деякому ідеалі I алгебри Лі L такому, що dimI/A<∞. Показано, що умова локальної скінченносгі алгебри L в цьому твердженні є суттєвою.
We study infinite-dimensional Lie algebras L over an arbitrary field that contain a subalgebra A such that dim(A + [A, L])/A < ∞. We prove that if an algebra L is locally finite, then the subalgebra A is contained in a certain ideal I of the Lie algebra L such that dimI/A <. We show that the condition of local finiteness of L is essential in this statement.