We say that A is a ring with duality for simple modules, or simply a DSM-ring, if, for every simple right (left) A-module U, the dual module U* is a simple left (right) A-module. We prove that a semiperfect ring is a DSM-ring if and only if it admits a Nakayama permutation. We introduce the notion of a monomial ideal of a semiperfect ring and study the structure of hereditary semiperfect rings with monomial ideals. We consider perfect rings with monomial socles.
Кільце A називається кільцем з дуальністю для простих модулів, або DSM-кільцем, якщо модуль U, дуальний до будь-якого простого правого (лівого) A-модуля U∗, с простим лівим (правим) A-модулем. Встановлено, що напівдосконале кільце є DSM-кільцем тоді і тільки тоді, коли воно допускає підстановку Накаями. Введено поняті я мопоміального ідеалу напівдоско-малого кільця та вивчено будову спадкових напівдосконалих кілець із такими ідеалами. Розглянуто досконалі кільця з мопоміальнимн цоколями.