Розглядаються нелінійні рівняння параболічного типу у рефлексивних банахових просторах. Наведено достатні умови ісиування розв'язків цих рівнянь. Застосовано методи дослідження задач із операторами псевдомонотонного (на підпросторі) типу. Крім того, розглянуто достатній критерій у соболевському просторі L p (0, T; W¹p (Ω)∩L₂ (0, T; L₂(Ω)), коли оператор, введений за допомогою функціональних коефіцієнтів, належить даному класу. Також показано можливість послабити класичну умову коерцитивності.
We consider nonlinear equations of parabolic type in reflexive Banach spaces. We present sufficient conditions for the existence of solutions of these equations. We use methods for the investigation of problems with operators of pseudomonotone (on a subspace) type. In addition, a sufficient criterion in the Sobolev space L p (0, T; W¹p (Ω)∩L₂ (0, T; L₂(Ω)) is considered for the case where an operator introduced with the use of functional coefficients belongs to a given class. We also show that it is possible to weaken the classical condition of coerciveness.