Для задачі комівояжера описано спосіб упорядкування маршрутів (відповідно і перестановок) підмножинами, який не залежить від структури вхідних даних певної задачі. Для одержаного упорядкування розроблено стратегію визначення тих підмножин, які містять глобальний розв’язок. Показано, що для подібних структур глобальні мінімум та максимум знаходяться в одних і тих же підмножинах. Використання цієї властивості дозволяє звужувати область пошуку оптимального розв’язку.
В данной статье разработана стратегия отсечения неэффективных решений, которая заключается в разбиении не множества значений целевой функции на подмножества, а в разбиении множества маршрутов задачи коммивояжера независимо от входной информации. Показано, что в зависимости от различных комбинаций элементов матрицы, которой задаются входные данные, множество маршрутов в задаче коммивояжера разделяется на одни и те же подмножества для различных индивидуальных задач с различной структурой входных данных.
A strategy for eliminating ineffective solutions is developed, which consists on not splitting the objective function values into a subset, but the set of routes for the salesman problem independently of the input data. It is shown that the various combinations of the matrix elements, which is the input data, the set of routes for the salesman problem is divided into the same subset for different individual problems with different structure of input data. Accordingly, a similar set of subsets arranges a set of permutations.