Для зменшення часових затрат під час кластеризації даних великих розмірів запропоновано декомпозиційний підхід, що базується на розбитті простору згідно з координатними вісями гіперкубів. Відповідне керування алгоритмом дає змогу об'єднувати кластери - результати з підмножин - у кінцеві при незначних втратах точності. Як приклади практичних даних використані зображення із значними кількостями пікcелів.
An approach to reduce algorithmic complexity for clustering of large-scale dataset is considered. The main idea is decomposition of item dataset and space by hypercube coordinates. To join clusters from subsets into the result clusters and to minimize the accuracy losses are the main tasks of the algorithm. Some visual patterns with large pixel numbers as test examples were investigated.