Показано, що кожна функція Каратеодорі f:T×X→Y —де Т — топологічний простір з регулярною σ-скінченною мірою, простори X і Y — метризовні і сепарабельні, X — локально компактний, має властивість Скорца-Драгоні. Аналогічний результат одержано, коли простір T — локально компактний і X=R∞
We consider Carathéodory functions f : T × X → Y, where T is a topological space with regular σ-finite measure, the spaces X and Y are metrizable and separable, and X is locally compact. We show that every function of this sort possesses the Scorza-Dragoni property. A similar result is also established in the case where the space T is locally compact and X = ℝ∞.