Анотація:
Crystallographic characteristics of nanodispersed materials obtained by plasma-chemical synthesis were studied. Using industrial equipment for plasma-chemical synthesis the nanodispersed powders of high-melting carbide, nitride, carbonitride and silicide class compounds based on titanium, magnesium, aluminium, silicon were obtained. Technology for synthesis of powder fraction less than 100 nm was developed. The efficiency of nanodisperse compositions use in smelting of structural steels was determined. In the result of 10Γ2C steel modification with Ti(CN) nanopowder properties may by notice ably enhanced. Elemental composition of nanodispersed composition was determined: SiC, TiC, TiN, Ti(CN), AlN, Mg2Si, Mg3N2. The elemental composition of synthesized compounds corresponded to stoichiometric composition. Microdiffractional patterns of the particles were analyzed; it was shown that nanopowders belong to the solid crystalline bodies with metallic bond. It has been found, that titanium carbonitride Ti(CN) particles have face-centered crystal lattice, while silicon carbide (SiC) particles have hexagonal lattice. Experiments for steel 10Γ2 and 10Γ2C modifying with nanopowder compositions on base of Ti(CN) and SiC were carried out. The efficiency of nanodisperse compositions use in smelting of structural steels was determined. In the result of 10Γ2C steel modification with Ti(CN) nanopowder strength, plastic properties and impact toughness were improved. The choice of nanodisperse titanium carbonitride Ti(CN) powders with 100 nm fraction for light alloy steels modifying was justified. The required criteria for choice of nanopowder modifiers were obtained: insolubility in smelt, correspondence of crystal lattice to steel matrix, commensurability with austenite germ critical radius in crystallizing.