Оіримано оцінку похибки проекційних методів розв'язання рівнянь Фредгольма І роду Ax=y+ζ випадковим збуренням ζ у припущенні, що інтегральний оператор A має (ϕ,β)-диференційовне ядро, а математичне сподівання ∥ξ∥² не більше ніж σ² рамках цих припуцення отримана оцінка є повним аналогом відомого результату Г. Ваннікко іа Р. Плато, що стосується детермінованого випадку, коли ∥ξ∥≤σ.
We estimate errors of projection methods for the solution of the Fredholm equaitons of the first kindAx=y+ζ with random perturbation ζ under the assumption that the integral operatorA has a (ϕ, β)-differentiable kernel and the mathematical expectation of ∥ξ∥² does not exceed σ². Under these assumptions, we obtain an estimate that is a complete analog of the well-known result by Vainikko and Plato for the deterministic case where ∥ξ∥≤σ.