Анотація:
Доведено, що для кожної послідовності (ak) комплексних чисел, яка задовольняє умови Σ(1/|ak |) < ∞ і |a k+1| − |ak | ↗ ∞ (k → ∞), існує неперервна спадна до 0 на [0, + ∞], функція l така, що f(z) = Π(1 −z/|ak|) є цілою функцією обмеженого l-індексу.