Анотація:
Let Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.