Анотація:
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.