Титановые сплавы имеют высокую прочность и коррозионную стойкость в широком диапазоне температур. При разработке перспективных сплавов необходимо повышать как рабочие температуры деталей и узлов будущих двигателей, так и их удельную прочность. В работе изучено влияние предварительного подогрева и локальной термообработки на структуру и свойства сварных соединений, выполненных электронно-лучевой сваркой экспериментальных титановых сплавов, легированных кремнием — псевдо α-сплава Ti–5,6Al–2,2Sn–3,5Zr–0,4Mo–1V–0,6Si и (α+β)-сплава Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si. Сварные соединения дисперсионно-упрочненного титанового (α+β)-сплава Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si имеют более высокий предел прочности, достигающий 1277 МПа, что соответствует 90 % прочности самого сплава. Долговременная прочность σ100 при температуре 600 оС сварного соединения титанового сплава Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si составляет около 260 МПа, что находится на уровне 93 % длительной прочности основного металла.
Титанові сплави мають високу міцність і корозійну стійкість в широкому діапазоні температур. При розробці перспективних сплавів необхідно підвищувати як робочі температури деталей і вузлів майбутніх двигунів, так і їх питому міцність. В роботі вивчався вплив попереднього підігріву та локальної термообробки на структуру і властивості зварних з’єднань, виконаних електронно-променевим зварюванням експериментальних титанових сплавів, легованих кремнієм — псевдо α-сплаву Ti–5,6Al–2,2Sn–3,5Zr–0,4Mo–1V–0,6Si і (α+β)-сплаву Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si. Зварні з’єднання дісперсійно-зміцненого титанового (α+β)-сплаву Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si мають більш високу межу міцності, що досягає 1277 МПа, що відповідає 90 % міцності самого сплаву. Довготривала міцність σ100 при температурі 600 оС зварного з’єднання титанового сплаву Ti–4,3Al–4,4Sn–6Zr–1,6Mo–0,7V–4,3Nb–0,4Si становить близько 260 МПа, що знаходиться на рівні 93 % тривалої міцності основного металу.
Titanium alloys have high strength and corrosion resistance in a broad temperature range. When developing promising alloys, it is necessary to increase both working temperatures of parts and components of future engines, and their specific strength. The work is a study of the influence of preheating and local heat treatment on the structure and properties of EB welded joints of experimental silicon-containing titanium alloys, namely pseudo α-alloy Ti-5.6Al-2.2Sn-3.5Zr-0.4Mo-1V-0.6Si and (α+β)-alloy Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si. Welded joints of dispersion strengthened titanium (α+β)-alloy Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si have higher ultimate strength, reaching 1277 A that corresponds to 90% of that of the alloy proper. Longterm strength ~100 at 600 C temperature of welded joint of Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si titanium alloy is equal to about 260 MPa that is on the level of 93% of long-term strength of base metal.