Анотація:
In previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.