Описано конструктивні методи побудови мінімальних та максимальних інваріантних множин у дискретному випадку. У диференціальній грі утримання розглянуто задачу знаходження інваріантних множин із застосуванням повного вимітання в новій постановці. Мета гравця-переслідувача — із будьякої точки одержаної множини утримати в ній траєкторію динамічної системи. Мета гравцявтікача — протилежна. Наведено приклад, на якому показана важливість різних умов повного вимітання, накладених на керування гравців.
The constructive methods for building minimal and maximal invariant sets in the discrete case are described. The aim of the chasing player is to keep the trajectory of dynamic system in this set from any point within the acquired set. The aim of the escaping player is contrary. The given example shows the importance of different conditions of «a complete sweeping», superimposing on the players’ control.
Описаны конструктивные методы построения минимальных и максимальных инвариантных множеств в дискретном случае. В дифференциальной игре удержания рассмотрена задача нахождения инвариантных множеств с применением полного выметания в новой постановке. Цель догоняющего игрока — из любой точки полученного множества удержать траекторию динамической системы в этом множестве. Цель убегающего игрока — противоположная. Приведен пример, в котором показана важность разных условий полного выметания, которые накладываются на управления игроков.