Алгебра L над полем F називається алгеброю Лейбніца (точніше лівою алгеброю Лейбніца), якщо вона
задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] — [b, [a, c]] для всіх a, b, c ∈L. Алгебри
Лейбніца являють собою узагальнення алгебр Лі. Отримано опис алгебр Лейбніца, кожна підалгебра яких є
ідеалом.
Алгебра L над полем F называется алгеброй Лейбница (точнее левой алгеброй Лейбница), если она удовлетворяет следующему тождеству Лейбница: [[a, b], c] = [a, [b, c]] — [b, [a, c]] для всех a, b, c ∈L. Алгебры Лейбница представляют собой обобщение алгебр Ли. Получено описание алгебр Лейбница, каждая подалгебра
которых является идеалом.
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the
Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈L. Leibniz algebras are generalizations of Lie
algebras. A description of Leibniz algebras, whose subalgebras are ideals, is given.