Анотація:
В статье исследуется порядок (скорость) приближения функций на прямой целыми функциями экспоненциального типа не выше σ при σ → ∞ (линейные и наилучшие приближения). Найден точный порядок приближения индивидуальных функций на Rd классическими методами суммирования интегралов Фурье: ГауссаВейерштрасса, Бохнера–Рисса, Марцинкевича и неклассическим методом Бернштейна–Стечкина. Для функций на торе подобные теоремы о приближении полиномами получены ранее.