Анотація:
В.И. Арнольдом в [1] сформулирована "гипотеза трансверсальности" о том, что в "естественном" семействе вещественных симметрических эллиптических операторов, определенных на компактной области, те операторы, у которых выделенное собственное значение имеет фиксированную кратность, образуют банахово гладкое подмногообразие конечной коразмерности. Им же была получена предполагаемая формула коразмерности, зависящая только от кратности собственного значения. Достаточные условия выполнения гипотезы были получены D. Lupo, A.M. Micheletti [2] (для семейства операторов Лапласа на переменной компактной области определения) и Я.М. Дымарским [3] (для семейства операторов вида лапласиан плюс потенциал с переменным потенциалом). Нами будет рассмотрено семейство комплексных несимметрических эллиптических операторов второго порядка, определенных на компактной области, у которых фиксирована кратность выделенного собственного значения. Для семейства получены достаточные условия справедливости гипотезы Арнольда.