В данной статье изучаются отображения, квазиконформные в среднем, на римановых многообразиях с интегральным условием типа ∫Ф(Q(х)) dv(x) < ∞. Найденные интегральные условия на функцию Ф являются не только достаточными, но и необходимыми для непрерывного продолжения f на границу.
У даній статті вивчаються відображення, квазіконформні у середньому, на ріманових многовидах з наступною інтегральною умовою ∫Ф(Q(х)) dv(x) < ∞. Знайдені інтегральні умови на функцію Ф є не тільки достатніми, а також необхідними для неперервного продовження / на межу.
In this article quasiconformal mappings in the mean on Riemannian manifolds with integral conditions of the type ∫Ф(Q(х)) dv(x) < ∞ are studied. The found integral conditions on the function Ф are not only sufficient but also necessary for continuous extension f to the boundary.