Анотація:
Рассматривается в ограниченной постановке движение по кеплеровой круговой орбите в центральном ньютоновском поле сил сложной механической системы, состоящей из гиростата и упругого стержня с массой на свободном конце. Гиростат рассматривается как твердое тело, в котором имеется вращающийся динамически и статически уравновешенный маховик. Однородный, прямолинейный в недеформированном состоянии упругий стержень жестко закреплен одним концом в корпусе гиростата. Ось недеформированного стержня произвольно расположена в главной центральной плоскости инерции гиростата. Относительные перемещения точек системы в результате малой деформации ее упругого звена представляются в виде бесконечного ряда разложения (без его априорного усечения) по заданной системе функций, зависящих от пространственных координат, с неизвестными коэффициентами, зависящими от времени. Ориентация системы на притягивающий центр определяется указанием расположения относительно связанной системы координат ортов нормали к плоскости орбиты и радиуса-вектора центра масс системы, указанная пара ортов располагается при этом в главной центральной плоскости инерции гиростата, содержащей ось недеформированного стержня. Дня выделенного таким образом однопараметрического семейства одноосных ориентаций системы на притягивающий центр аналитически определяются деформации стержня, естественно, зависящие от ориентации, г простатический момент, обеспечивающий равновесие выбранной ориентации (нетривиального равновесия, так как при этом стержень, вообще говоря, деформирован) и условия устойчивости равновесий в смысле Ляпунова.