Анотація:
Рассмотрена задача о движении по инерции вокруг центра масс механической системы, состоящей из двух подобных соосных эллипсоидов, жестко связанных друг с другом. Пространство между эллипсоидами целиком заполнено несжимаемой вязко-упругой средой Кельвина-Фойгта. Предполагается, что на эту среду наложены кинематические связи, допускающие только однородные деформации. Внутренний эллипсоид целиком заполнен несжимаемой ньютоновской жидкостью, совершающей однородное вихревое движение. Движение системы описывается девятью обыкновенными дифференциальными уравнениями. Найдены стационарные решения этих уравнений, описывающие равномерные вращения системы вокруг наименьшей оси эллипсоидов. В линейной постановке исследовано поведение решений уравнений движения в малой окрестности стационарных решений. Установлено, что если геометрические размеры и массовые характеристики эллипсоидов и их заполнений выбрать такими же, какие имеет Земля, то можно указать значение модуля Юнга вязко-упругой среды, при котором период времени обхода вектором угловой скорости наименьшей оси эллипсоидов будет равен периоду Чендлера.