Посилання:ESR studies of nitrogen atoms stabilized in aggregates
of krypton–nitrogen nanoclusters immersed in superfluid helium / S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee // Физика низких температур. — 2012. — Т. 38, № 11. — С. 1313–1319. — Бібліогр.: 45 назв. — англ.
Підтримка:We take this opportunity to thank Adil Meraki, Patrick
McColgan and Trevor Dragon for assembling experimental
setup and participation in the experiments.
The work was supported by grant № 010366-0137-2009
Norman Hackerman Advanced Research Program, CRDF
grant RUP1-7025-CG-11, RFBR grant 11-02-92500-CRDFE_a,
and federal contract 11.519.11.6021 with Russian
Federation Ministry of Education and Science.
Impurity–helium condensates (IHCs) containing nitrogen and krypton atoms immersed in superfluid ⁴He
have been studied via a CW electron spin resonance (ESR) technique. The IHCs are gel-like aggregates of nanoclusters
composed of impurity species. It was found that the addition of krypton atoms to the nitrogen–helium
gas mixture used for preparation of IHCs increases efficiency of stabilization of nitrogen atoms. We have
achieved high average (5·10¹⁹ cm⁻³) and local (2·10²¹ cm⁻³) concentrations of nitrogen atoms in kryptonnitrogen–helium
condensates. The analysis of ESR lines shows that three different sites exist for stabilization of
nitrogen atoms in krypton-nitrogen nanoclusters. Nitrogen atoms are stabilized in the krypton core of nanoclusters,
in the nitrogen molecular layer which covers the Kr core and on the surface of the nanoclusters. High concentrations
of nitrogen atoms achieved in IHCs provide an important step in the search for magnetic ordering effects
at low temperatures.