Анотація:
The current-voltage characteristics and temperature dependences of electrical
conductivity in SnO₂-Co₃O₄-Nb₂O₅-Cr₂O₃-CuO semiconductor ceramics are studied, and
possible mechanism of non-ohmic conduction in these materials is discussed. Due to
addition of CuO up to 0.5 mol.%, the nonlinearity coefficient is increased up to 75, and
the electric field is decreased down to 3900 V∙cm¹ (at 1 mA∙cm⁻²). It makes CuO addition useful for the preparation of SnO₂-based varistors. It is concluded that the electrical conduction is controlled by grain-boundary barriers. The activation energy of
electrical conduction (the barrier height φ) is decreased with an increase in the electric field E. The higher slope of the dependence at high fields can be related to a participation of minority carriers (holes). The addition of more than 0.5 mol.% CuO leads to degradation of the varistor effect due to percolation via quite conductive CuO-based intergranular phase.